

Pre-Conference Education Sessions

Please scan the QR code below if you require CEU credit for this session.

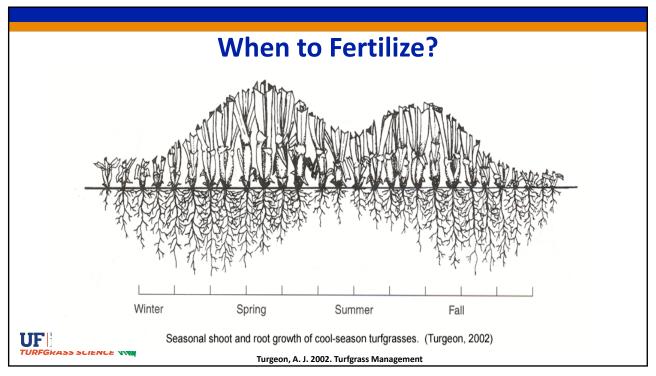
This session is sponsored by

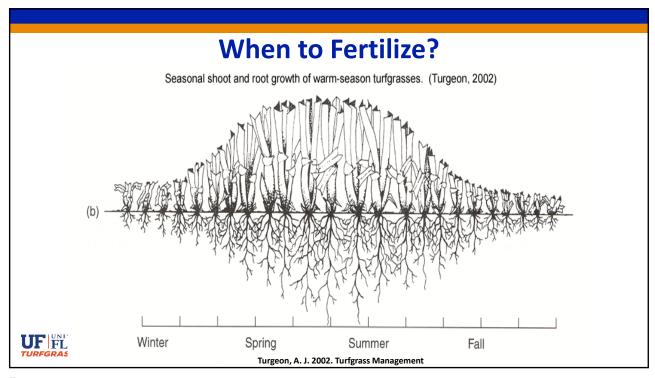
-

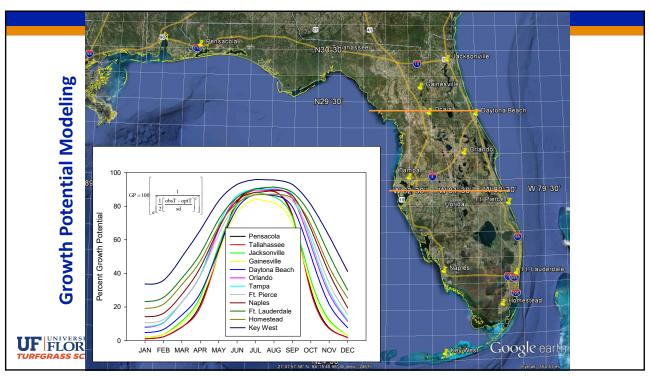
UF FLORIDA

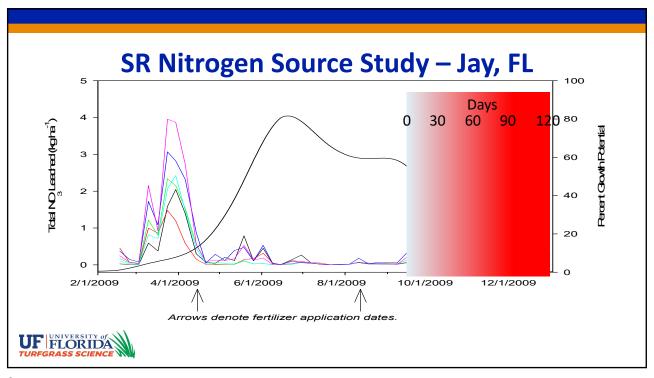
Outline

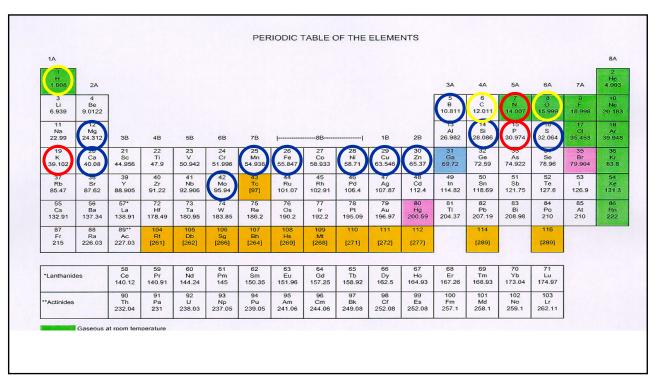
- Why
- When
- What
- Soil Analysis
- General Recommendations




3


Fertilizer Basics – Why Fertilize?

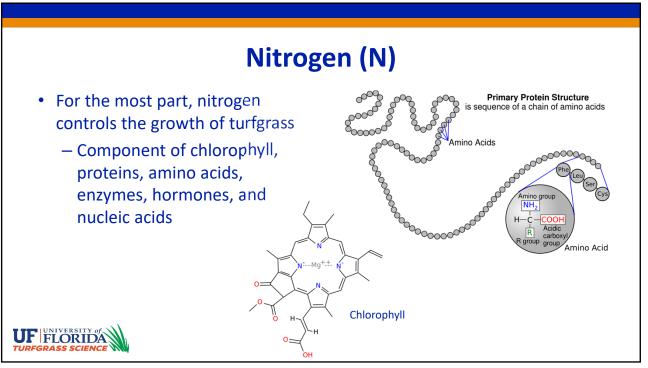

- Plants are living organisms and they require proper nutrition
 - Nutrition for plants comes in the form of fertilizer
- A properly fertilized turf is the best defense against plant pests
- A properly fertilized turf provides protection from storm water runoff
- "Proper" nutrition does not mean over-fertilization



17 Essential Elements

- Carbon (C)
- Hydrogen (H)
- Oxygen (O)
- Nitrogen (N)
- Phosphorus (P)
- Potassium (K)
- Sulfur (S)
- Calcium (Ca)

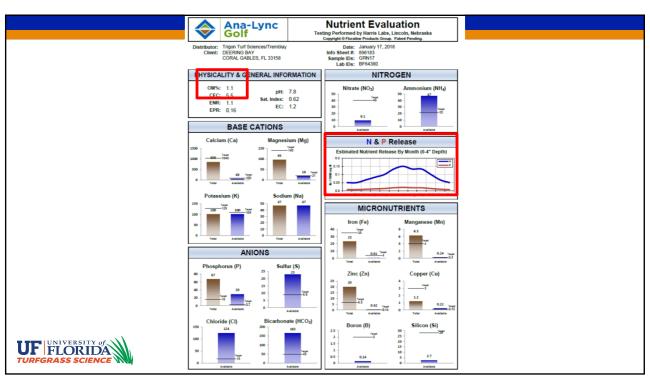
- Iron (Fe)
- Magnesium (Mg)
- Boron (B)
- Manganese (Mn)
- Copper (Cu)
- Zinc (Zn)
- Molybdenum (Mo)
- Chlorine (CI)
- Nickel (Ni)

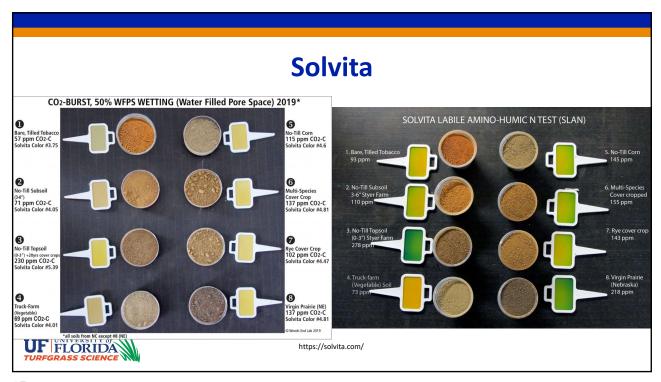

	Table 3. Essent	ial plant nutrients with visual	deficiency sym	ptoms and plant tissue	
	Nutrient	Visual Deficiency Symptoms (all of these can result in poor shoot growth)	Typical Shoot Tissue Concentration ¹	Critical Soll Test Level ²	
		Non Mineral Nutrients (obtain	ned from air and/or wa	iter)	
	carbon (C)	never deficient	43-48%	n/a	
	hydrogen (H)	never deficient	2-4%	n/a	
	oxygen (O)	shoots never deficient, but roots can be deficient in saturated (especially compacted) soils	43-48%	avoid soil moisture saturation for extended periods	
		Primary Macro	onutrients		
	nitrogen (N)	chlorosis, significantly poor growth/ recovery (excessive nitrogen results in dark green color with excessive shoot growth/poor root growth)	3-4% Nitrogen (N	n/a (typical values are 5-10 parts per million [ppm] unless higher due to recent fertilization)	BEST MANAGEMENT PRACTICES FOR THE SPORTS FIELD MANAGE A PROFESSIONAL GUIDE FOR ENVIRONM SPORTS FIELD MANAGEMENT April 2021
	phosphorus (P)	poor root growth, in rare circumstances shoots will be red/ purple	0.25-0.45%	18-30 ppm	
	potassium (K)	chlorosis, lack of turgidity (shoots lay over)	2-3%	150-200 ppm	
	sulfur (S)	chlorosis	0.23-0.30%	n/a (less likely to respond to sulfur fertilizer as organic matter levels increase above 3%)	
FLORIDA	calcium (Ca)	lack of turgidity (shoots lay over)	0.5-1.0	400-500 ppm	
FGRASS SCIENCE	magnesium (Mg)	chlorosis	0.25-0.50	80-100 ppm	

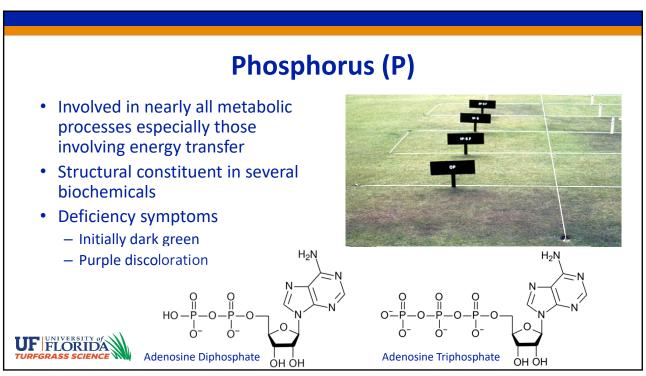
Nutrient	Visual Deficiency Symptoms (all of these can result in poor shoot growth)	Typical Shoot Tissue Concentration ¹	Critical Soil Test Level ²
	Micronut	rients	
iron (Fe)	general chlorosis, although interveinal chlorosis is common in most species, this type of chlorosis is difficult to see or not present in shortly mowed turfgrass; it is rare to see deficiencies in newer varieties	65-500	n/a (very poor correlation to plant response)
zinc (Zn)	chlorosis	22-50 pm	>1-2 ppm
manganese (Mn)	chlorosis	35-60 ppm	6-10 ppm
copper (Cu)	chlorosis	5-8 ppm	0.4-0.6 ppm
boron (B)	chlorosis	8-15 ppm	>1-2 ppm
chloride (CI)	chlorosis	unknown	>20-25 ppm
nickel (Ni)	not observed	unknown	unknown

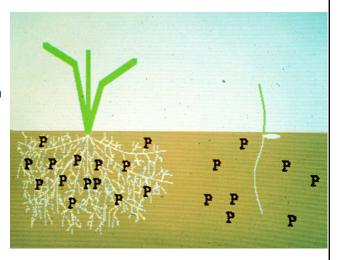
¹Values shown are not intended to represent optimal ranges, but rather are what is commonly measured. Optimal levels vary by species, variety, use, and environment.

²The soil test values shown for the primary macronutrients have good confidence due to significant research, but the other nutrients have relatively less scientific backing and, instead, are based largely on observations and extrapolations with other species. The excessive soil test level shown is not meant to be a 'sufficiency level', but rather the point at which there is virtually no chance that a fertilizer response would be likely.


Nitrogen Influences:

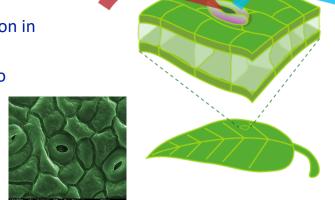

- Color
- Shoot Density
- Root Growth
- Shoot Growth
- Carbohydrate Reserves
- Rhizome & Stolon Growth
- Temperature Stress and Tolerance


- Drought Resistance
- Thatch Accumulation
- Cold Tolerance
- Wear Tolerance
- Recuperative Potential



Turf Response to P

- If turf is initially deficient, one may observe:
 - Darker green
 - Enhanced root growth, especially on young turf
 - Enhanced cold tolerance, drought recovery and water use efficiency
- If turf is not deficient, one may observe:
 - Little to no response


Carbon dioxide enters, while water and oxygen exit, through a leaf's stomata.

19

Potassium (K)

- Required for activation of many enzymes
- Osmoregulation regulates guard cells -> water regulation in plants
- Used in carbohydrate, amino acid, and protein synthesis
- Stress tolerance

Potassium (K) Nutrition

- Many ignore potassium fertilization because there is no obvious visual or growth response from applications
 - Deficiencies can lead to:
 - Increased wilting
 - Winter desiccation
 - Reduced drought tolerance
 - Reduced wear tolerance
 - Increased disease susceptibility

21

Soil Analysis

- The tenets of proper soil testing include:
 - Sampling
 - Testing
 - Interpretation
 - Recommendations

Soil Sampling Depth

- Probably the greatest source of error
- Proper sampling procedures involve ensuring that the soil sample accurately represents the area where the turf or landscape will be grown
 - Soil samples should be taken from the depth in which most of the roots exist – typically the upper 4" for turf and landscape soils

23

Soil Sampling Depth

- Using a soil probe or garden spade, take 10 – 15 random samples from the areas in questions
- Avoid mixing soil from healthy areas with soil from unhealthy areas as this will reduce the ability to diagnose the problem
- Thoroughly mix the soil and place a in a soil sample bag

Soil Analysis

- The tenets of proper soil testing include:
 - Sampling
 - Testing
 - Interpretation
 - Recommendations

25

Soil Testing Procedures

- Soil testing procedures focus on extraction or digestion of the sample
 - The purpose of the extractant is to determine the quantity of an element that would be representative of, or correlates to, what will be available for plant uptake during that growing season
 - The method employed is specific to the nutrients, the geographic region, and the physiographic and mineralogical nature of the sampling site

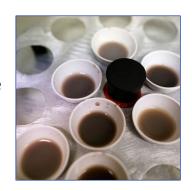


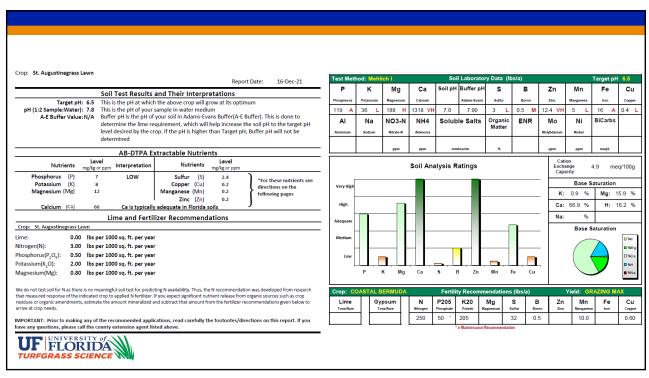
Photo Credit: https://agrilifeextension.tamu.edu/assets/environment-natural-resources/soil/soil-testing/

Soil Extractants Differ

Region	Soil P Extractant	
Arid and semiarid Midwest, West, and Northwest	Olsen Am. Bicarbonate + DTPA	NaHCO ₃ NH ₄ HCO ₃ + DTPA
Humid Midwest, mid-Atlantic, Southeast, and eastern Canada	Mehlich 3 Bray 1	Acetic Acid + $\mathrm{NH_4NO_3}$ + $\mathrm{NH_4F}$ + Nitric Acid + EDTA HCl and $\mathrm{NH_4F}$
North central and Midwest	Bray 1	HCl and NH₄F
Washington and Oregon	Bray 1 for acidic soils Olsen for alkaline soils	HCl and NH ₄ F NaHCO ₃
Southeast and mid-Atlantic	Mehlich 1 Mehlich 3	HCl + H ₂ SO ₄ Acetic Acid + NH ₄ NO ₃ + NH ₄ F + Nitric Acid + EDTA
Northeast (New York and parts of New England), some labs in Idaho and Washington	Morgan or modified Morgan Mehlich 3	Acetic Acid Acetic Acid + NH ₄ NO ₃ + NH ₄ F + Nitric Acid + EDTA

27

Soil Analysis


- The tenets of proper soil testing include:
 - Sampling
 - Testing
 - Interpretation
 - Recommendations

These two create considerable confusion and frustration!

What's in the bag?

- Numbers refer to percent nitrogen, phosphorus, and potassium in the bag
 - $N P_2O_5 K_2O$
- Example: 6-2-0
 - 15% N
 - $-0\% P_2O_5$
 - $-15\% K_2O$
- · Nutrient sources are also listed

What Fertilizer Should I Use?

- Quick Release (Water Soluble) N Sources:
 - Commonly used by professional lawn care companies and on commercial turf
 - Very effective fertilizer
 - Provide quick green-up (days) and growth surge but response is short term (< 30 days)
 - Can leach if over-applied or followed by excess irrigation or rainfall
 - Less expensive

31

Quick Release (Soluble) Nitrogen

- Inorganic Carriers:
 - -Ammonium Nitrate
 - Ammonium Sulfate
 - Potassium Nitrate
- Organic Carriers:
 - Urea

What Fertilizer Should I Use?

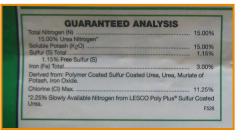
- Slow Release (Insoluble) N Sources:
 - Releases nitrogen slowly over time
 - Release rate tied to technology
 - Response may range from 30-180 days
 - Less growth surge and green-up after application
 - Sometimes homeowners get discouraged and re-apply when they don't see a response
 - More expensive
 - Products may be prone to runoff

33

Slow Release (Insoluble) Nitrogen

- Methylene Urea
- Stabilized Nitrogen
- Coated Materials
 - -Sulfur
 - Resin
 - Polymer
 - Plastic

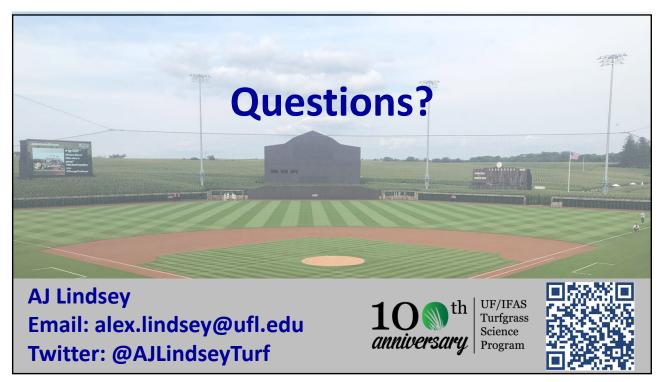
Natural Organic Fertilizer


Example Product	Analysis (N-P ₂ O ₅ -K ₂ O)	Trade Name (examples)	
Fertilizer Sources			
Activated sewage sludge	6-4-0,	Milorganite®,	
	4-3-0	e-Corganite™	
	5-2-4,	Sustane®,	
Composted poultry manure	5-4-5,	EarthWorks™ Replenish,	
	5-3-2	Richlawn Organic	
Iron sucrate	micronutrient	SuGrow® Granular	
Meals and Extracts			
	10-0-6,	Ringer Lawn Restore®,	
Hydrolyzed poultry feathers meal	11-2-2,	Scotts® Natural Lawn Food,	
	10-2-8	Nature Safe® All Season Fertilizer	
Coun aluton mool	8-2-4,	Gardens Alive!® WOW!® Supreme,	
Corn gluten meal	9-0-0	Espoma® Organic Weed Preventer	
Couloon mool	7-1-2,	The Andersons® innova®,	
Soybean meal	10-0-2	PurelyOrganic™ - Plant Based Lawn Food	
Bone meal	4-12-0	Espoma® Organic Bone Meal	
Blood meal	12-0-0	Whitney Farms® Natural Blood Meal	
I = Nitrogen, P = Phosphorus, K = Potassi	ium, Fe = Iron		
Additional products are available in diffe	erent formulations for all th	nese products.	

35


What Fertilizer Should I Use?

Most retail products are a blend of QRN and SRN



Practical Considerations

- Nutrients must be applied based on the plant's ability to assimilate them
- Healthy, dense turf is the key to minimizing environmental impact of applied nutrients
 - As the health of the plant deteriorates one can expect problems
- Reclaimed water contains nutrients that should be factored into fertilizer needs
 - Check with reclaimed water provider to obtain nutrient levels

