SFMA SPORTS FIELD
 Pre-Conference Education Sessions

Please scan the QR code below if you require CEU credit for this session.

This session is sponsored by

1

Irrigation Calculations

Practical problems involving irrigation.

Irrigation Calculations

- Total water use
- Cost of irrigation water
- Capacity of storage lakes and ponds.
- This will not cover irrigation system design and many of the more complex irrigation calculations.

Important Facts

- Acre foot
- The amount of water required to cover one acre $(43,560$ ft^{2}) to a depth of one foot.
- 1 acre foot $=325,851.4 \mathrm{gal}$
- To cover 5 acres with one foot of water would require:
- $(5)(325,851.4 \mathrm{gal})=1,629,527 \mathrm{gal}$ of water

5

Important Facts

- Acre foot
- Turf irrigation is made on a bases of inches not feet.
- 1 acre foot is made up of twelve 1 -inch sections.

Important Facts

- Acre inch
$>1 / 12^{\text {th }}$ of 1 acre foot.

1 acre inch $=325,851.4$ gal/acre foot
12 in/foot
$=\underline{27,154.3 \text { gal in } 1 \text { acre inch }}$

Total Water Use

- Amount of water a irrigated area consumes.

Total Water Use

If 40 acres of turf were to be irrigated with 1 inch of water, how many gallons would need to be applied to the area?

Facts:

There are 40 acres, each receiving 1 acre inch of water.
There are $27,154.3$ gal of water in 1 acre inch.
Therefore:
$(27,154.3 \mathrm{gal} / \mathrm{acre}$ inch $)(40 \mathrm{acres})=1,086,172 \mathrm{gal}$ to apply 1 inch of water to 40 acres.

9

Cost Example

A sports complex is looking at the possibility of connecting to the city water system.
There are 55 acres of irrigated native soil fields and $110,000 \mathrm{ft}^{2}$ of sand-based areas.

Part 1: How much water would be needed by the facility during a peak irrigation week in midsummer?

Part 2: Estimate the total water cost for the season, given a cost of $\$ 0.03$ per cubic foot (ft^{3}) of water.

Cost Example

Assumptions Part 1:

- A total of 1.2 inch irrigation, including adjustments for evaporation, will be needed in a peak irrigation week on the native soil.
- A total of 1.8 inch irrigation, including adjustments for evaporation, will be needed in a peak irrigation week on the sand-based areas.

Cost Example

Determine total water use for 1 week period.
A. Native soils: There are 55 acres to be irrigated that are to receive 1.2 inches of water during a peak week of irrigation.

1) $\frac{27,154.3 \mathrm{gal}}{1 \text { in }}=\frac{X \text { gal }}{1.2 \mathrm{in}}$
2) $(27,154.3 \mathrm{gal})(1.2 \mathrm{in})=X$ gal
3) $X=32,585.2$ gal to apply 1.2 in to 1 acre
4) $X=(32,585.2$ gal $)(55$ acres $)$
$X=1,792,186 \mathrm{gal}$ of water will be required in 1 week to apply 1.2 inch of water to 55 acres native soil.

Cost Example

Determine total water use for 1 week period.
B. Sand-based: There are $110,000 \mathrm{ft}^{2}$ of irrigated sand-based areas that are to receive 1.8 inches of water during a peak week of irrigation.

1) $\frac{27,154.3 \mathrm{gal}}{1 \text { in }}=\frac{\mathrm{X} \mathrm{gal}}{1.8 \mathrm{in}}$
2) $(27,154.3 \mathrm{gal})(1.8 \mathrm{in})=X$ gal
3) $X=48,877.7$ gal to apply 1.8 in to 1 acre

Cost Example

Determine total water use for 1 week period.

B. Sand-based: There are $110,000 \mathrm{ft}^{2}$ of irrigated sand-based areas that are to receive 1.8 inches of water during a peak week of irrigation.
4) $\frac{48,877.7 \mathrm{gal}}{43,560 \mathrm{ft}^{2}}=\frac{\mathrm{X} \mathrm{gal}}{110,000 \mathrm{ft}^{2}}$
5) $(X)=(48,877.7 \mathrm{gal})\left(110,000 \mathrm{ft}^{2}\right)$ 43,560 ft ${ }^{2}$

Cost Example

Determine total water use for 1 week period.
B. Sand-based: There are $110,000 \mathrm{ft}^{2}$ of irrigated sand-based turfgrass that are to receive 1.8 inches of water during a peak week of irrigation.
6) $X=5,376,547,000 \div 43,560 \mathrm{ft}^{2}$
7) $X=123,428.5$ gal of water will be required in 1 week to apply 1.8 inch of water to $110,000 \mathrm{ft}^{2}$ of sand-based turfgrass.

Cost Example

Determine total water use for 1 week period.
c. Total water requirement during a peak irrigation week.

1,792,186.0 gal (native soils)
$+123,428.5 \mathrm{gal}$ (sand-based)
$1,915,614.5 \mathrm{gal}$ is the total water use
for a 1-week period.

Cost Example

- Assumptions for Part 2 - Cost of water for one season.
- 15 in of irrigation water for native soil areas.
- 21 in of irrigation water for sand-based areas.

Cost Example

Determine the cost of water for 1 season.

A. Native soils: It was calculated that $1,792,059.5 \mathrm{gal}$ of water will be needed to apply 1.2 in of water to 55 acres of native soil sports fields. How much water will be needed to apply 15 in .

1) $\frac{1,792,186 \mathrm{gal}}{1.2 \mathrm{in}}=\frac{\mathrm{X} \mathrm{gal}}{15 \mathrm{in}}$
2) $[(1,792,186 \mathrm{gal})(15 \mathrm{in})] \div 1.2 \mathrm{in}=X$ gal
3) $\mathrm{X} \mathrm{gal}=26,882,790 \mathrm{gal} \div 1.2 \mathrm{in}$
4) $X=22,402,325 \mathrm{gal}$ of water will be required to irrigate the native soil fields for one season.

Cost Example

Determine the cost of water for 1 season.

B. Sand-based: It was calculated that $123,420 \mathrm{gal}$ of water will be needed to apply 1.8 in of water to sand-based turfgrass. How much water will be needed to apply 21 in .
1)

2) $(123,428.5 \mathrm{gal})(21 \mathrm{in})=(1.8 \mathrm{in})(X$ gal $)$
3) $2,591,998 \mathrm{gal} \div 1.8$
4) $X=1,439,999 \mathrm{gal}$ of water will be required to irrigate the sand-based turfgrass areas for one season.

Cost Example

Determine the cost of water for 1 season.
C. Total water requirement for the season
$22,402,325$ gal (native soil fields) $+1,439,999$ gal (sand-based turfgrass) $23,842,324 \mathrm{gal}$ is the total water use for a 1 season.

Cost Example

Determine the cost of water for 1 season.
D. Costs: The cost of water is based on a charge of $\$ 0.03 / \mathrm{ft}^{3}$. Determining the total cost requires one more conversion factor.

1) $\frac{1 \mathrm{ft}^{3}}{7.480519 \mathrm{gal}}=\frac{\mathrm{Xft}}{}{ }^{3}{ }_{2} 342,324 \mathrm{gal}$
2) $X \mathrm{ft}^{3}=23,840,643 \div 7.480519$
3) $X=3,187,030 \mathrm{ft}^{3}$

At $\$ 0.03 / \mathrm{ft}^{3}$, the total cost of water is estimated to be:
4) $X=(3,187,030)(0.03)$
$X=\$ 95,610.91$

Active Ingredient Formulations

- Percent active ingredient (A.I.) will be listed on the container.
- Dry pesticide formulations
- Dusts (D)
- Granules (G)
- Dry Flowables (DF)
- Water Dispersible Granules (WDG)
- Wettable Powders (WP)
- Soluble Powders (SP)

Active Ingredient Formulations

Percent active ingredient (A.I.) will be listed on the container.

Liquids:

-Emulsifiable Concentrates (EC)
-Solutions (S)
-Liquids (L)
-Flowables (F)

- Concentration of the active ingredient is usually listed immediately in front of the formulation abbreviation (i.e. 3EC, 2L, 4F).
- The number indicates the pounds of active ingredient contained in one gallon of product
- (i.e. 3 EC would mean that the product was an emulsifiable concentrate containing 3 pounds of active ingredient per gallon).

Dry pesticides are worked like dry fertilizers

Liquid pesticides are worked like liquid fertilizers

A 2.5G preemergence herbicide is to be applied at a rate of 2 lbs. a.i. per acre to $90,000 \mathrm{ft}^{2}$ of fields. How much of the material will be needed?

27

1) $(X)(0.025)=2$ lbs. a.i.
2) $\quad X=2 / 0.025$
3) $X=80$ lbs. of 2.5 G per acre will be needed to apply 2 lbs. a.i. per acre

How much 4 EC herbicide will be needed to apply 1.5 lbs. active ingredient (a.i.) per acre?

