

Turfgrass Irrigation: Water Quality, Quantity, and Lack of Thereof

Please scan the QR code below if you require CEU credit for this session.

Water Quality, Quantity, and Lack of Thereof

FOR THE

#GATORGOOD

Marco Schiavon Assistant Professor

Marco Schiavon Past Present Education/Employers

UF UNIVERSITY of **FLORIDA**

UC RIVERSITY OF CALIFORNIA Turfgrass Science

Strategies to Reduce (Potable) Irrigation Water Consumption for Turf

- 1. Deficit Irrigation
- 2. Sufficient N fertilization
- Irrigation with recycled/impaired water

- 4. Use of surfactants
- 5. Increase irrigation efficiency
 - I. Scheduling
 - a) Climate data
 - b) Soil water status
 - II. Improve Water Distribution

Water Use (Rate)

The total amount of water used by a turfgrass plant or sward through evaporation, transpiration, and for growth (per unit time). Because amount used for growth is small, it is usually referred to as evapotranspiration (ET) in inches or mm per day, week, or month.

Relative Turfgrass Water Use (Huang, 2006)

Relative Ranking	ET rate (mm/d)	Turfgrass Species
Very Low	<6	Buffalograss
Low	6-7	Bermudagrass Centipedegrass Zoysiagrass
Moderate	7-8.5	Hard fescue Chewing fescue Creeping red fescue Bahiagrass Seashore paspalum St. Augustinegrass
High	8.5-10	Perennial ryegrass Kikuyugrass
Very high	>10	Tall fescue Creeping bentgrass Annual bluegrass Kentucky bluegrass Rough bluegrass Annual ryegrass
	UNIVERSITY of FLORIDA	

Deficit Irrigation

Irrigating turf with some fraction of water that is less than the estimated reference ET.

Weather Station Networks

www.cimis.water.ca.org

(https://fawn.ifas.ufl.edu/)

 ET_o calculated from

- Solar radiation
- Temperature
- Humidity
- Wind speed $ET_o =$

 $\frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_s)}{1 + 273}$ $\Delta + \gamma (1 + 0.34 u_2)$

Crop Coefficients (Kc)

Table A.4. Monthly crop coefficients (K_c) for turfgrasses developed in Irvine, California and Tucson, Arizona

	Irvine K _c ^z		Tueson Ke ^y	
Month	Cool-season turfgrass	Warm-season turfgrass	Fairway quality bermudagrass overseeded in winter	
January	0.61	0.55	0.78	
February	0.64	0.54	0.79	
March	0.75	0.76	0.86	
April	1.04	0.72	0.90	
May	0.95	0.79	0.85	
June	0.88	0.68	0.78	
July	0.94	0.71	0.78	
August	0.86	0.71	0.82	
September	0.74	0.62	0.83	
October	0.75	0.54	_	
November	0.69	0.58	0.82	
December	0.60	0.55	0.79	

2016 NTEP/USGA Coeseason Drought Test

2018 NTEP/USGA Cooseason Drought Test

2018 NTEP/USGA Coeseason Drought Test

7/25/2019 (30% ET)

10/1/2019 (30% ET)

'Cody' buffalograss

'Meyer' zoysiagrass

Find a Study near you!

60% ET (California)

50% ET (Oregon)

Turfgrass Evaluation

Primo Maxx 0.25 oz/M/2 wks + Revolution 6 oz/M/4 wks

Primo Maxx 0.25 oz/M/2 wks

70% ETo

Control

Revolution 6 oz/M/4 wks

Can products help turf look better with less water? 2016-17

Rep 2 70% ETo UC-Riverside 10-20-16

Primo Effect

Rep 2 40% ETo UC-Riverside 10-20-16

P = Primo R = Revolution GP = GroPower TR = Turf Royale Bio = Ocean Organics Biostimulant Program CN = Calcium nitrate 1935 = ACA1935 (patent pending) 5000 = ACA5000 (patent pending)

No Revolution Revolution

"We know Revolution is good, but we can't afford it on fairways." Let's talk about the problem

Green Section Record

June 02, 2023

Volume 61, Issue 10

Penetrants vs. Retainers: Understanding Wetting Agent Claims and the Science Behind Them

RESEARCH

June 02, 2023 By Daniel O'Brien, M.S., University of Arkansas Mike Fidanza, Ph.D., Penn State University Stan Kostka, Ph.D., Penn State University Mike Richardson, Ph.D., University of Arkansas

Regardless of whether they're called "penetrants" or "retainers," wetting agents are an invaluable tool to help get water into the rootzone and keep it there.

Use of wetting agents

Table 1. Soil surfactant products for the turf industry in the USA market in 2019.

Chemical Class	п	Chemical Category	п	Formulation Category	22
				Block Copolymer	94
		Block Copolymer	112	Block Copolymer - Alcohol Ethoxylate Blends	3
				Block Copolymer + Alkylpolyglycoside	5
				Block Copolymer - Maleic Acid Blends	3
				Block Copolymer - Solvent Blends	2
				Modified Methyl Capped Block Copolymer	1
				Oleic Acid Esters of Block Copolymer	1
		1	Other Block Copolymer Blends	3	
Nonionic	142	Alcohol	2	Alcohol Ethoxylates	2
	Alkylpolyglucoside	4	Alkylpolyglucoside	4	
	Botanical	1	Yucca plant extract	1	
	Organosilicone	1	Organosilicone	1	
		Polyalizione	5	Hexahydroxy Polyaikylene Polymers	1
	Folyaikylefie		Octahydroxy Polyalkylene Polymers	4	
Po			Polyoxyethylene - Alkylpolyglucoside Blends	2	
		Polyoxyethylene	17	Polyoxyethylene - Block Copolymer Blends	2
			Polysorbate Polyoxyethylene Copolymer	13	
Anioia	18	18 Anioic and Blends with Anionics	18	Anionic Blends	11
Amole	10			Blends of Anionic and Nonionic	7
Unknown	32	Not Disclosed	32	Not Disclosed	32

Total Products in the Marketplace: 192

(Fidanza et al., 2020)

Penetrants vs Retainers

Wetting Agents (2018-19)

Plot	Treatment	Rate	Company
Whole Plot	ET _{os} Replacement	45%-55%-65%	
Split Plot	Untreated control		
Split Plot	Revolution	6 oz/M	Aquatrols
Split Plot	ACA001	4 oz/M	Aquatrols
Split Plot	Tricure AD	6 oz/M	Mitchell Products
Split Plot	MPX-5	3 oz/M	Mitchell Products
Split Plot	Forte + CounterAct Retain	0.37 oz/M + 3 oz/M	Simplot
Split Plot	Forte + Brilliance	0.37 oz/M + 3 oz/M	Simplot
Split Plot	Aquimax Turf Lateral	8 oz/M (initial)/ 4 oz/M (subsequent)	Exacto
Split Plot	Passage	6 oz/M	Numerator Tech
Split Plot	Vivax	5 oz/M	Precision Laboratories
Split Plot	Cascade Plus	8 oz/M (initial)/ 4 oz/M (subsequent)	Precision Laboratories
Split Plot	Hydro90+Symphony	3 oz/M + 3 oz/M	Harrell's

Wetting Agent Trial

'Tifway II' (established 2017) Mowing height: 1.27 cm 5 g N m⁻² month⁻¹ May- October Visual Quality NDVI DIA VWC Soil moisture variability

Fun with numbers!

 μ = mean (VWC %) σ = standard deviation (uniformity of water distribution

Results

Treatment	Turf quality	PGC (%)	DGCI	VWC (%, m³ m⁻³)	Soil moisture variability [†] (2019)
Untreated control	5.5 b	65.8 c	0.363 d	16.1 c	4.8 a
Revolution [®]	6.1 a	73.4 a	0.374 ab	18.4 a	3.5 c
TriCure AD [°] (1x rate)	6.1 a	73.0 a	0.374 ab	17.7 ab	3.7 bc
TriCure AD [°] (1/2 x rate)	6.0 a	71.8 ab	0.372 abc	17.5 b	3.8 bc
Forté™ + CounterAct [®] Retain	6.0 a	69.7 b	0.368 cd	16.5 c	3.9 bc
Forté™ + Brilliance [®]	6.1 a	73.5 a	0.375 ab	17.9 ab	4.1 b
Aquimax [®] Turf Lateral	6.1 a	71.8 ab	0.370 bc	17.1 bc	3.5 c
Passage	6.2 a	73.4 a	0.376 a	18.6 a	3.6 c
Vivax™	6.1 a	72.0 ab	0.371 abc	17.5 b	3.7 bc
Cascade Plus™	6.1 a	73.2 a	0.372 abc	17.7 b	3.7 bc
Hydro-90 [°] + Symphony [°]	6.1 a	73.1 a	0.375 ab	18.0 ab	3.8 bc

[†] Soil moisture variability was determined by calculating the standard deviation of VWC among 10 data points within each plot. The higher the standard deviation refers to higher variability, therefore, lower uniformity. [‡] Values followed by the same letter in a column are not significantly different from one another, according to Fisher's protected LSD, P = 0.05.

Results

Results

AL Units web Califord Ans. The

Untreated control

Revolution

Forte + CounterAct Retain

Tricure ½ rate

Arkansas trial

Wetting Agent Products Tested in 2019 and 2021 Field Studies

Manufacturer	Penetrant'	Retainer ²		
Aquatrols (Paulsboro, NJ)	Dispatch	Primer Select		
Precision Labs (Waukegan, IL)	Duplex	Magnus		
Floratine (Collierville, TN)	Pervade	Retain		
Harrell's (Lakeland, FL)	Fleet	Symphony		

1 Products marketed by the manufacturer to improve water "infiltration" and/or "penetration"

2 Products marketed by the manufacturer to improve water "retention", "availability", and/or "hydration" for turfgrass rootzones

Arkansas trial

2021 Pentrant-Retainer Volumetric Water Content Comparison

Conclusions (wetting agents)

Most wetting agents tested in this 2-yr study indicated positive effects on improving turf quality, PGC, DGCI, soil moisture, and soil moisture uniformity.

Our research suggested that turfgrass managers, especially those managing turfgrass on a fine sandy loam, can select the use of products according to their available budget.

Conclusions (wetting agents)

How much a wetting agent improves infiltration, retention and uniformity of rootzone moisture, regardless of any penetrant or retainer designation, is what's most important

Wetting agent function cannot be understood exclusively in terms of chemistry

Data on heavy soils still lacking

Civitas trial (2018) Bermudagrass & seashore paspalum 70% ETos vs 50% ETos

Seashore paspalum 50% ET Civitas 8 oz/M+Revolution 3 oz/M every 2 weeks

Civitas trial (55% ET; 2019)

Civitas (8.5 oz/M 14 days)

Civitas (8.5 oz/M 21 days)

Civitas (4.5 oz/M 14 days)

Civitas trial (45% ET; 2019)

Salinity issues in turfgrass

- What causes salinity problems?
 - Salinity in the water
 - Salinity in the soil
 - Testing for salinity
 - Methods for managing salt
 - Moisture/salinity sensors

Three main problems relater do water quality

Salinity Sodicity Carbonates and bicarbonates

Water Quality Parameters - Salinity

Salinity – all irrigation water contains dissolved mineral salts and chemicals.

Direct and indirect injury:

Direct – injury to foliage from direct application of "salty" water.

Indirect – salts (sodium) causes clay soils to disperse and "plug" soil pores.

Indirect – salts accumulate at the soil surface as water evaporates leading to soil structure loss.

Salinity

Good leaching conditions

Insufficient water with high ET

Carrow, Huck and Duncan, 2000

Irrigation Audit

Water Quality Parameters - Sodicity

Sodicity – Concentration of Na to Ca and Mg.

Both Ca and Mg (primarily Ca) are responsible for soil structure.

When excessive Na is applied to the soil, it displaces Ca from soil colloid causing soil deflocculation, and consequent permeability problems.

$$SAR = \frac{[Na^+]}{\sqrt{\frac{Ca^{2+} + Mg^{2+}}{2}}}$$

SAR_{adj}= SAR * [1+(8.4-pHc)]

Sodic and Saline-Sodic Soils

Managing Sodic Soils

Plant Nutrition

•Additional N-P-K (and micronutrients) applied foliar

Water Quality Parameters – Bicarbonates and Carbonates

Bicarbonate and Carbonate

When irrigation water is high in bicarbonates (HCO_3^{-}) and carbonates (CO_3^{-2}) , these ions readily react with any Ca⁺² and Mg⁺² in the water to form CaCO₃ and MgCO₃ (lime) which have low solubility. This leaves Na+ to dominate.

> If the irrigation water is low Ca^{+2} and Mg^{+2} , soil HCO_3^- and CO_3^{-2} levels increase, and Ca and Mg are then precipitated out as carbonates in the soil.

Acidification

 $H_2SO_4 + CaCO_3 \rightarrow CO_2 + H_2O + CaSO_4$ and makes gypsum!

*Sulfuric acid is extremely dangerous and should only be handled by trained personnel.

Acidify when

Adj.
$$SAR_w > 6$$
, HCO_3 and $CO_3 > 120$ ppm, $RSC > 1.25$

Turfgrass Water Conservation Strategies

- Warm-Season Turf
- Source of N
- Reclaimed Water
- Primo Maxx
- Wetting Agent
- Colorants
- Others?

Acknowledgments

@FLRECturf UNIVERSITY of FLORIDA