The Importance of Managing Soil Moisture on Athletic Fields

Kyley Dickson, Ph.D.

Athletic Field Safety Concerns

- Over 40 million athletes participate in organized sports annually (Micheli, 2000)
- More than 8,000 sports related injuries that require emergency room visits for youth daily (Wier et al., 2009)

Athletic Field Safety Concerns

- There are over \$1.3 billion each year in medical expenses for sports related injuries each (Hergenroeder, 1998)
- 5.7% of high school football injuries were definitely related to field conditions, 15.2% were possibly related to field conditions (Harper et al., 1984)

Athlete-to-surface interactions (Bell, 1985; Nigg et al., 1984)

Ground Reaction Forces

What is playing quality?

Safety and Playability

Athletic Fields

- Poor athletic field playing quality can negatively impact player performance and safety
 (Cockerham et al., 1993)
- Reduced turf cover
 - Increases surface hardness
 - Reduces traction (Holmes and Bell, 1986)

Characteristics of a good athletic field

- Maintain adequate
 - Traction
 - Surface hardness
 - Turfgrass cover
- Consistent and safe regardless of weather conditions

(Henderson et al., 2009)

Played under different soil water content (SWC) conditions

Athletic events take place across a variety of field conditions

Previous Research

· Native soils are higher in silt plus clay content than sand based root zones, resulting in higher soil water content (SWC) and lower infiltration rates

(Pitt et al., 2008)

• Too much rain can create unstable soil conditions due to excessive SWC

(Antunes et al., 2011)

Previous Research

• Bermudagrass under high levels of SWC exhibited greater loss of GTC subjected to traffic compared to lower levels of SWC

(Carrow et al., 2001)

· Green turfgrass cover loss was greater for higher SWC levels on Poa pratensis (L.) subjected to traffic events

(Minner and Valverde, 2004)

· Surface hardness and SWC have an inverse relationship

(Rogers and Waddington, 1989 & 1992)

Objectives

- 1. Determine the impact of varying SWC levels for turfgrass performance characteristics and soil physical properties in silt loam and sand root zones
- 2. Create a predictive model for loss of GTC due to SWC

Silt Loam Root Zone

Materials and Methods

- Treatments
 - 4 soil water contents

10% (+/- 3.5) 17% (+/- 3.5) 26% (+/- 3.5) 35% (+/- 5.0)

- · All Plots hand watered
 - SWC checked daily
- 12 ft x 6 ft plots
- Tifway Hybrid bermudagrass (C. dactylon (L.) Pers. x C. transvaalensis Burtt-Davy)
- · Silt loam root zone
 - (28% sand, 48% silt, and 24% clay)

Data Collection

- Percent Green Cover Damage (DIA, Richardson et al., 2001)
- Field Performance Evaluations Surface Hardness (Clegg, F1702)
- Shear Resistance (Shear Vane, Goddard et al., 2008)
- Vertical and horizontal forces (TAFT, Thoms et al., 2013)

Turfgrass Measurements

- Internode length (Caliper, Roche and Loch, 2005)
- Leaf Texture (Caliper, Roche and Loch, 2005)
- Clipping Collection (Bucket, Turgeon et al., 1979)
- Percent Green Cover Recovery (DIA, Richardson et al., 2001)
- Spring Recovery (DIA, Richardson et al., 2001) Turfgrass cover (Visual estimate, Skogley and Sawyer, 1992)

Soil Physical Properties

- Soil Bulk Density (Core method, Grossman and Reinsch, 2002)
- · Air-filled Porosity (Gravimetric method with water saturation, Flint and Flint, 2002) · Water-filled Porosity (Water desorption method, Flint and Flint, 2002)
- . Organic Matter (Loss on ignition, F1647)
- · Soil Moisture (Gravimetric method, Topp and Ferré, 2002)
- Soil Moisture (Time Domain Reflectometry, Topp and Ferré, 2002)
- Infiltration (Double ring Infiltrometer, Burgy and Luthin, 1956)

Conclusions • Athletic field performance was best between 7% to 20% SWC • 30% SWC or above negatively impacts athletic field performance • As soil water increases surface hardness decreases

Sand Root Zone

Materials and Methods

- Treatments
 - 3 soil water contents 8% (+/- 3)
 - 16% (+/- 3) 25% (+/- 5)
- 12 ft x 6 ft plots
- Tifway Hybrid bermudagrass (*C. dactylon* (L.) Pers. x *C. transvaalensis* Burtt-Davy)
- USGA specification root zone
 - (0.7% very coarse, 14.3% coarse, 61.4% medium, 18.1% fine, 5.1% very fine, and 0.4% silt and clay)

Field Performance Evaluations

aluations Data Collection

- Percent Green Cover Damage (DIA, Richardson et al., 2001)
- · Surface Hardness (Clegg, F1702)
- Shear Resistance (Shear Vane, Goddard et al., 2008)
- · Vertical and horizontal forces (TAFT, Thoms et al., 2013)

Turfgrass Measurements

- Internode length (Caliper, Roche and Loch, 2005)
- Leaf Texture (Caliper, Roche and Loch, 2005)
- Clipping Collection (Bucket, Turgeon et al., 1979)
- Percent Green Cover Recovery (DIA, Richardson et al., 2001)
- Spring Recovery (DIA, Richardson et al., 2001)
- Turfgrass cover (Visual estimate, Skogley and Sawyer, 1992)
 Soil Physical Properties

Soil Bulk Density (Core method, Grossman and Reinsch, 2002)

- Air-filled Porosity (Gravimetric method with water saturation, Flint and Flint, 2002)
- Water-filled Porosity (Water desorption method, Flint and Flint, 2002)
- Organic Matter (Loss on ignition, F1647)
- Soil Moisture (Gravimetric method, Topp and Ferré, 2002)
- Soil Moisture (Time Domain Reflectometry, Topp and Ferré, 2002)
- Infiltration (Double ring Infiltrometer, Burgy and Luthin, 1956)

Soil Water Content Comparison Through 10 Traffic Events

Conclusions

- Soil moisture had minimal impact on athletic field performance
- A predictive model was created for the loss of green turfgrass cover due to SWC and traffic events

Take Home Message

- •In higher clay content soils moisture management is key
- Soil moisture has minimal impact on sand based root zone performance

Summary

Consolidated averages - ASTM F355-2016, Missile E

- KBG / BG USGA HIC 700 at ~6.2 ft / HIC 1000 at ~8.5 ft
- BG NATIVE HIC 700 at ~5.2 ft / HIC 1000 at ~7.2 ft
- BG NATIVE HIC 700 at ~4.5 ft / HIC 1000 at ~6.2 ft

Conclusion

- Critical fall height is more of a function of soil texture than soil moisture for sand root zones
- Critical fall height is impacted by soil water content in silt loam soil root zones

Variety Selection

	Root and Rhizome Dry Mass					Root Length
Cultivar	(g) Soil Depth (cm)					(cm)
	0-15	15-30	30-45	Total	Rhizomes	
TifTuf	1.07	0.56 a	0.18 a	1.82 a	2.56 a	42.8
atitude 36	1.04	0.27 b	0.02 b	1.33 b	1.62 b	34.8
Tifway	1.00	0.32 b	0.03 b	1.35 b	2.02 ab	35.8
P value summary	NS	*	**	*	*	NS

Conclusion

- TifTuf had higher quality after withholding water
- TifTuf produced the most root surface area

National turfgrass evaluation program (NTEP) – NTEP.org

- 2013 National bermudagrass test
- 35 seeded and vegetative varieties
- Only 13 are commercially available
- Test includes traffic to test for wear tolerance (sports field use)

NTEP Varieties Commercially available Varieties Tiffway Latitude 36 Patriot Celebration Celebration NuMex-Sahara NuMex-Sahara NuMex-Sahara Princess 77 Monaco Riviera Princess 78 Monaco Riviera Princess 79 Monaco Riviera Princess 79 Monaco Riviera Princess 70 Monaco Riviera Princes

The Future

Take Home Message

- Soil moisture management is key to the safety and playability of athletic fields
- Soil moisture impacts each soil texture differently
- Variety selection is important
- There are many traditional and new tools available to manage soil moisture

